American Geophysical Union

  • Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 180.
    This volume addresses the rapid decline of Arctic sea ice, placing recent sea ice decline in the context of past observations, climate model simulations and projections, and simple models of the climate sensitivity of sea ice. Highlights of the work presented here include An appraisal of the role played by wind forcing in driving the decline; A reconstruction of Arctic sea ice conditions prior to human observations, based on proxy data from sediments; A modeling approach for assessing the impact of sea ice decline on polar bears, used as input to the U.S. Fish and Wildlife Service's decision to list the polar bear as a threatened species under the Endangered Species Act; Contrasting studies on the existence of a "tipping point," beyond which Arctic sea ice decline will become (or has already become) irreversible, including an examination of the role of the small ice cap instability in global warming simulations; A significant summertime atmospheric response to sea ice reduction in an atmospheric general circulation model, suggesting a positive feedback and the potential for short-term climate prediction. The book will be of interest to researchers attempting to understand the recent behavior of Arctic sea ice, model projections of future sea ice loss, and the consequences of sea ice loss for the natural and human systems of the Arctic.

  • GIS and Geocomputation for Water Resource Science and Engineering not only provides a comprehensive introduction to the fundamentals of geographic information systems but also demonstrates how GIS and mathematical models can be integrated to develop spatial decision support systems to support water resources planning, management and engineering. The book uses a hands-on active learning approach to introduce fundamental concepts and numerous case-studies are provided to reinforce learning and demonstrate practical aspects. The benefits and challenges of using GIS in environmental and water resources fields are clearly tackled in this book, demonstrating how these technologies can be used to harness increasingly available digital data to develop spatially-oriented sustainable solutions. In addition to providing a strong grounding on fundamentals, the book also demonstrates how GIS can be combined with traditional physics-based and statistical models as well as information-theoretic tools like neural networks and fuzzy set theory.

  • Magma Redox Geochemistry Nouv.

    Magma Redox Geochemistry Magma Redox Geochemistry The redox state is one of the master variables behind the Earth's forming processes, which at depth concern magma as the major transport agent. Understanding redox exchanges in magmas is pivotal for reconstructing the history and compositional make-up of our planet, for exploring its mineral resources, and for monitoring and forecasting volcanic activity. Magma Redox Geochemistry describes the multiple facets of redox reactions in the magmatic realm and presents experimental results, theoretical approaches, and unconventional and novel techniques. Volume highlights include: Redox state and oxygen fugacity: so close, so farRedox processes from Earth's accretion to global geodynamicsRedox evolution from the magma source to volcanic emissionsRedox characterization of elements and their isotopes The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

  • A comprehensive textbook presenting techniques for the analysis and characterization of shale plays Significant reserves of hydrocarbons cannot be extracted using conventional methods. Improvements in techniques such as horizontal drilling and hydraulic fracturing have increased access to unconventional hydrocarbon resources, ushering in the "shale boom" and disrupting the energy sector. Unconventional Hydrocarbon Resources: Techniques for Reservoir Engineering Analysis covers the geochemistry, petrophysics, geomechanics, and economics of unconventional shale oil plays. The text uses a step-by-step approach to demonstrate industry-standard workflows for calculating resource volume and optimizing the extraction process. Volume highlights include: Methods for rock and fluid characterization of unconventional shale plays A workflow for analyzing wells with stimulated reservoir volume regions An unconventional approach to understanding of fluid flow through porous media A comprehensive summary of discoveries of massive shale resources worldwide Data from Eagle Ford, Woodford, Wolfcamp, and The Bakken shale plays Examples, homework assignments, projects, and access to supplementary online resources Hands-on teaching materials for use in petroleum engineering software applications The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

  • Defending society against natural hazards is a high-stakes game of chance against nature, involving tough decisions. How should a developing nation allocate its budget between building schools for towns without ones or making existing schools earthquake-resistant? Does it make more sense to build levees to protect against floods, or to prevent development in the areas at risk? Would more lives be saved by making hospitals earthquake-resistant, or using the funds for patient care? What should scientists tell the public when - as occurred in L'Aquila, Italy and Mammoth Lakes, California - there is a real but small risk of an upcoming earthquake or volcanic eruption?  Recent hurricanes, earthquakes, and tsunamis show that society often handles such choices poorly. Sometimes nature surprises us, when an earthquake, hurricane, or flood is bigger or has greater effects than expected from detailed hazard assessments. In other cases, nature outsmarts us, doing great damage despite expensive mitigation measures or causing us to divert limited resources to mitigate hazards that are overestimated. Much of the problem comes from the fact that formulating effective natural hazard policy involves combining science, economics, and risk analysis to analyze a problem and explore the costs and benefits of different options, in situations where the future is very uncertain. Because mitigation policies are typically chosen without such analysis, the results are often disappointing. This book uses general principles and case studies to explore how we can do better by taking an integrated view of natural hazards issues, rather than treating the relevant geoscience, engineering, economics, and policy formulation separately. Thought-provoking questions at the end of each chapter invite readers to confront the complex issues involved. Readership: Instructors, researchers, practitioners, and students interested in geoscience, engineering, economics, or policy issues relevant to natural hazards. Suitable for upper-level undergraduate or graduate courses. Additional resources can be found at: http://www.wiley.com/go/Stein/Playingagainstnature

  • Explores soil as a nexus for water, chemicals, and biologically coupled nutrient cycling Soil is a narrow but critically important zone on Earth's surface. It is the interface for water and carbon recycling from above and part of the cycling of sediment and rock from below. Hydrogeology, Chemical Weathering, and Soil Formation places chemical weathering and soil formation in its geological, climatological, biological and hydrological perspective. Volume highlights include: The evolution of soils over 3.25 billion years Basic processes contributing to soil formation How chemical weathering and soil formation relate to water and energy fluxes The role of pedogenesis in geomorphology Relationships between climate soils and biota Soils, aeolian deposits, and crusts as geologic dating tools Impacts of land-use change on soils The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Editors

  • Seismoelectric coupling and its current and?potential future applications  The seismoelectric method-the naturally-occurring?coupling of seismic waves to electromagnetic fields-can provide insight into important properties of porous media. With a variety of potential environmental and engineering uses, as well as larger scale?applications?such as earthquake detection and oil and gas exploration, it offers a number of advantages over conventional geophysical methods.  Seismoelectric Exploration: Theory, Experiments, and Applications?explores the coupling between poroelastic and electromagnetic disturbances,?discussing?laboratory experiments, numerical?modeling techniques, recent theoretical developments, and field studies.?  Volume highlights include:  Physics of the seismoelectric effect at the microscale  Governing equations describing coupled seismo-electromagnetic fields  Examples of successful seismoelectric field experiments in different geological settings  Current and potential applications of seismoelectric coupling  Noise removal techniques for seismoelectric field measurements  The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. 

  • Explores how two coastal ecosystems are responding to the pressures of human expansion The Northern Adriatic Sea, a continental shelf ecosystem in the Northeast Mediterranean Sea, and the Chesapeake Bay, a major estuary of the mid-Atlantic coast of the United States, are semi-enclosed, river-dominated ecosystems with urbanized watersheds that support extensive industrial agriculture. Coastal Ecosystems in Transition: A Comparative Analysis of the Northern Adriatic and Chesapeake Bay presents an update of a study published two decades ago. Revisiting these two ecosystems provides an opportunity to assess changing anthropogenic pressures in the context of global climate change. The new insights can be used to inform ecosystem-based approaches to sustainable development of coastal environments. Volume highlights include: Effects of nutrient enrichment and climate-driven changes on critical coastal habitats Patterns of stratification and circulation Food web dynamics from phytoplankton to fish Nutrient cycling, water quality, and harmful algal events Causes and consequences of interannual variability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors

  • Mankind is using a greater variety of metals in greater quantities than ever before. As a result there is increasing global concern over the long-term availability of secure and adequate supplies of the metals needed by society. Critical metals, which are those of growing economic importance that might be susceptible to future scarcity, are a particular worry.  For many of these we have little information on how they are concentrated in the Earth's crust, how to extract them from their ores, and how to use, recycle and dispose of them effectively and safely.
    Published with the British Geological Survey, the Critical Metals Handbook brings together a wealth of knowledge on critical metals and provides a foundation for improving the future security and sustainability of critical metal supplies. Written by international experts, it provides a unique source of authoritative information on diverse aspects of the critical metals, including geology, deposits, processing, applications, recycling, environmental issues and markets. It is aimed at a broad non-specialist audience, including professionals and academics working in the exploration and mining sectors, in mining finance and investment, and in mineral processing and manufacturing. It will also be a valuable reference for policy makers concerned with resource management, land-use planning, eco-efficiency, recycling and related fields.

  • Comprehensive and up-to-date information on Earth's most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics Mathematical description of the underlying physical processes that generate ENSO variations Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle Advances in modeling, paleo-reconstructions, and operational climate forecasting Future projections of ENSO and its impacts Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors.

  • Explores the complex physico-chemical processes involved in active volcanism and dynamic magmatism Understanding the magmatic processes responsible for the chemical and textural signatures of volcanic products and igneous rocks is crucial for monitoring, forecasting, and mitigating the impacts of volcanic activity. Dynamic Magma Evolution is a compilation of recent geochemical, petrological, physical, and thermodynamic studies. It combines field research, experimental results, theoretical approaches, unconventional and novel techniques, and computational modeling to present the latest developments in the field. Volume highlights include: Crystallization and degassing processes in magmatic environments Bubble and mineral nucleation and growth induced by cooling and decompression Kinetic processes during magma ascent to the surface Magma mixing, mingling, and recharge dynamics Geo-speedometer measurement of volcanic events Changes in magma rheology induced by mineral and volatile content The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

  • Global Flood Hazard
    Subject Category Winner, PROSE Awards 2019, Earth Science Selected from more than 500 entries, demonstrating exceptional scholarship and making a significant contribution to the field of study. PROSE Award Finalist 2019  Association of American Publishers Award for Professional and Scholarly Excellence Flooding is a costly natural disaster in terms of damage to land, property and infrastructure. This volume describes the latest tools and technologies for modeling, mapping, and predicting large-scale flood risk. It also presents readers with a range of remote sensing data sets successfully used for predicting and mapping floods at different scales. These resources can enable policymakers, public planners, and developers to plan for, and respond to, flooding with greater accuracy and effectiveness. Describes the latest large-scale modeling approaches, including hydrological models, 2-D flood inundation models, and global flood forecasting models Showcases new tools and technologies such as Aqueduct, a new web-based tool used for global assessment and projection of future flood risk under climate change scenarios Features case studies describing best-practice uses of modeling techniques, tools, and technologies  Global Flood Hazard is an indispensable resource for researchers, consultants, practitioners, and policy makers dealing with flood risk, flood disaster response, flood management, and flood mitigation. 

  • Although bioenergy is a renewable energy source, it is not without impact on the environment. Both the cultivation of crops specifically for use as biofuels and the use of agricultural byproducts to generate energy changes the landscape, affects ecosystems, and impacts the climate. Bioenergy and Land Use Change focuses on regional and global assessments of land use change related to bioenergy and the environmental impacts. This interdisciplinary volume provides both high level reviews and in-depth analyses on specific topics. Volume highlights include: Land use change concepts, economics, and modeling Relationships between bioenergy and land use change Impacts on soil carbon, soil health, water quality, and the hydrologic cycle Impacts on natural capital and ecosystem services Effects of bioenergy on direct and indirect greenhouse gas emissions Biogeochemical and biogeophysical climate regulation Uncertainties and challenges associated with land use change quantification and environmental impact assessments Bioenergy and Land Use Change is a valuable resource for professionals, researchers, and graduate students from a wide variety of fields including energy, economics, ecology, geography, agricultural science, geoscience, and environmental science. 
    Read an interview with the editors to find out more:
    https://eos.org/editors-vox/bioenergys-impacts-on-the-landscape

  • Floods can have a devastating impact on life, property and economic resources. However, the systematic collection of damage data in the aftermath of flood events can contribute to future risk mitigation. Such data can support a variety of actions including the identification of priorities for intervention during emergencies, the creation of complete event scenarios to tailor risk mitigation strategies, the definition of victim compensation schemes, and the validation of damage models to feed cost-benefit analysis of mitigation actions. Volume highlights include: Compilation of real world case studies elaborating on the survey experiences and best practices associated with flood damage data collection, storage and analysis, that can help strategize flood risk mitigation in an efficient manner Coverage of different flooding phenomena such as riverine and mountain floods, spatial analysis from local to global scales, and stakeholder perspectives, e.g. public decision makers, researchers, private companies Contributions from leading experts in the field, researchers and practitioners, including civil protection actors working at different spatial and administrative level, insurers, and professionals working in the field of natural hazard risks mitigation Flood Damage Survey and Assessment: New Insights from Research and Practice will be a valuable resource for earth scientists, hydrologists, meteorologists, geologists, geographers, civil engineers, insurers, policy makers, and planners. Read an interview with the editors to find out more:
    https://eos.org/editors-vox/the-value-of-disaster-damage-data

  • The Chernobyl Nuclear Power Plant (NPP) disaster that occurred in Ukraine on April 26, 1986, was one of the most devastating in human history. Using this as a case study, the AGU monograph Groundwater Vulnerability: Chernobyl Nuclear Disaster is devoted to the problem of groundwater vulnerability, where the results of long-term field and modeling investigations of radionuclide transport in soil and groundwater, within the Ukrainian part of the Dnieper River basin (Kyiv region of Ukraine), are discussed. The authors provide a comprehensive review of existing literature on the assessment of groundwater vulnerability and then describe an improved methodology, which is developed based on integration of the methods of hydrogeological zonation and modeling of anomalously fast migration of radioactive contaminants from the land surface toward groundwater. This volume also includes the evaluation of the effect of preferential and episodic flow on transport of radionuclides toward the aquifers and risk assessment of groundwater vulnerability, which can further assist future researchers in developing remediation technologies for improving drinking water quality. Further, this volume sheds light on the consequences of groundwater contamination from nuclear disasters and assists with assessing the risks associated with contamination and developing effective remediation technologies. Volume highlights include discussions of the following: Assessment of groundwater vulnerability to contamination from the Chernobyl nuclear disaster Novel analytical results of the 25-year investigations of groundwater contamination caused by Chernobyl-born radionuclides The wealth of data on different modes of radioactive transport in the atmosphere, water, and soils, and along the food chains The hydrogeological and physico-chemical processes and factors in groundwater contaminated zones The applicability of commonly used methods of the evaluation of groundwater vulnerability A unique method of fluid dynamics that involves an anomalously fast migration of contaminants through zones of preferential flow from the land surface toward groundwater Building confidence in the assessment of migration pathways of radionuclides in the biosphere Assessment and prediction of the consequences of the nuclear accident, which can shed light on protection from global nuclear accidents Analogue information for different nuclear waste disposal and environmental projects around the world

  • The US Antarctic meteorite collection exists due to a cooperative program involving the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the Smithsonian Institution. Since 1976, meteorites have been collected by a NSF-funded field team, shipped for curation, characterization, distribution, and storage at NASA, and classified and stored for long term at the Smithsonian. It is the largest collection in the world with many significant samples including lunar, martian, many interesting chondrites and achondrites, and even several unusual one-of-a-kind meteorites from as yet unidentified parent bodies. Many Antarctic meteorites have helped to define new meteorite groups. No previous formal publication has covered the entire collection, and an overall summary of its impact and significant samples has been lacking. In addition, available statistics for the collection are out of date and need to be updated for the use of the community. 35 seasons of U.S. Antarctic Meteorites (1976-2011): A Pictorial Guide to the Collection is the first comprehensive volume that portrays the most updated key significant meteoritic samples from Antarctica. 35 seasons of U.S. Antarctic Meteorites presents a broad overview of the program and collection nearly four decades after its beginnings. The collection has been a consistent and reliable source of astromaterials for a large, diverse, and active scientific community. Volume highlights include: Overview of the history, field practices, curation approaches Special focus on specific meteorite types and the impact of the collection on understanding these groups (primitive chondrites, differentiated meteorites, lunar and martian meteorites) Role of Antarctic meteorites in influencing the determination of space and terrestrial exposure ages for meteorites Statistical summary of the collection by year, region, meteorite type, as well as a comparison to modern falls and hot desert finds The central portion of the book features 80 color plates each of which highlights more influential and interesting samples from the collection. 35 seasons of U.S. Antarctic Meteorites would be of special interest to a multidisciplinary audience in meteoritics, including advanced graduate students and geoscientists specializing in mineralogy, petrology, geochemistry, astronomy, near-earth object science, astrophysics, and astrobiology.

  • The Galápagos Islands are renown for their unique flora and fauna, inspiring Charles Darwin in the elaboration of his theory of evolution. Yet in his Voyage of the Beagle, published in 1839, Darwin also remarked on the fascinating geology and volcanic origin of these enchanted Islands. Since then, the Galápagos continue to provide scientists with inspiration and invaluable information about ocean island formation and evolution, mantle plumes, and the deep Earth. Motivated by an interdisciplinary Chapman Conference held in the Islands, this AGU volume provides cross-disciplinary collection of recent research into the origin and nature of ocean islands, from their deepest roots in Earth's mantle, to volcanism, surface processes, and the interface between geology and biodiversity. Volume highlights include: Case studies in biogeographical, hydrological, and chronological perspective Understanding the connection between geological processes and biodiversity Synthesis of decades of interdisciplinary research in physical processes from surface to deep interior of the earth In-depth discussion of the concept of the island acting as a natural laboratory for earth scientists Integrated understanding of the Galápagos region from a geological perspective Collectively, The Galápagos presents case studies illustrating the Galápagos Archipelago as a dynamic natural laboratory for the earth sciences. This book would be of special interest to a multidisciplinary audience in earth sciences, including petrologists, volcanologists, geochronologists, geochemists, and geobiologists.

  • Published by the American Geophysical Union as part of the Special Publications Series. Geotrekking in Southeastern Arabia presents the world's most diverse geology and reveals some of the unique rocks that were once covered under shallow seas and are now sub-aerially exposed. This guidebook describes various routes that leads to specific locations for viewing the distinctive and world class geology of the United Arab Emirates and Oman. Each route includes specific directions, satellite images, illustrations, and explanations that can help with locating the outstanding geology of the area. Certain sites preseve the world class ophiolites - a section of the Earth's oceanic curst and the underlying upper mantle that has been uplifted and exposed above sea level and often emplaced onto continental crustal rocks, a unique process of the Earth described by plate tectonics. Some salient features of this guidebook include: UAE and Oman are situated in the south east coast of the Arabian Peninsula, which is very well known for its vast reserves of oil and natural gas, hence this book is of great interest to exploration geologists Mountains of the UAE and Oman are the world's largest and best preserved ophiolite - a slice of the deep ocean crust that has been forced by tectonic forces onto a continental crust Within the mountains of these regions are sections of the deep Earth, rarely exposed anywhere - pieces of the Earth's underlying mantle and the lower parts of its oceanic crust Other characteristic features include deep sea sediments and volcanic rocks that were erupted by submarine volcanoes Among mineral ores, cpper deposits were commonly formed at ancient, deep sea, hydrothermal vents Some of the groundwater flowing out of ophiolite rocks reacts with the atmosphere to precipitate calcite and form vast pools of water that appear as blue swimming pools The shallow land and high evaporation conditions in the western region of the UAE forms giant, salt-lined mudcracks and the growth of gypsum clusters called "desert roses" Stromatolites, colonies of cyanobacteria that are probably some of the oldest living species on Earth are also very common in this region Some dunes in UAE rise upto 160 m above evaporative salt plains Rare occurrence of 100 million-year-old pillow lavas, which form underwater, uniquely preserved as if they erupted yesterday Many other geologic marvels exist in a region known more for its oil and gas geology

  • Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 173.
    The ocean's meridional overturning circulation (MOC) is a key factor in climate change. The Atlantic MOC, in particular, is believed to play an active role in the regional and global climate variability. It is associated with the recent debate on rapid climate change, the Atlantic Multi-Decadal Oscillation (AMO), global warming, and Atlantic hurricanes. This is the first book to deal with all aspects of the ocean's large-scale meridional overturning circulation, and is a coherent presentation, from a mechanistic point of view, of our current understanding of paleo, present-day, and future variability and change. It presents the current state of the science by bringing together the world's leading experts in physical, chemical, and biological oceanography, marine geology, geochemistry, paleoceanography, and climate modeling. A mix of overview and research papers makes this volume suitable not only for experts in the field, but also for students and anyone interested in climate change and the oceans.

  • Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 177.
    This monograph is the first to survey progress in realistic simulation in a strongly eddying regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts Oceanographic Processes and Regimes: Fundamental Questions Ocean Dynamics and State: From Regional to Global Scale, and Modeling at the Mesoscale: State of the Art and Future Directions The volume details important advances in physical oceanography based on eddy resolving ocean modeling. It captures the state of the art and discusses issues that ocean modelers must consider in order to effectively contribute to advancing current knowledge, from subtleties of the underlying fluid dynamical equations to meaningful comparison with oceanographic observations and leading-edge model development. It summarizes many of the important results which have emerged from ocean modeling in an eddying regime, for those interested broadly in the physical science. More technical topics are intended to address the concerns of those actively working in the field.

  • Published by the American Geophysical Union as part of the Special Publications Series. Opening Space Research: Dreams, Technology, and Scientific Discovery is George Ludwig's account of the early development of space-based electromagnetic physics, with a focus on the first U.S. space launches and the discovery of the Van Allen radiation belts. Narrated by the person who developed many of the instruments for the early Explorer spacecraft during the 1950s and participated directly in the scientific research, it draws heavily upon the author's voluminous collection of laboratory notes and other papers, upon the Van Allen archive, and upon a wide array of other sources. This book presents very detailed discussions of historic events in a highly readable (semitechnical), first-person form. More than that, though, Opening Space Research brings to the forefront the entire team of scientists who made these accomplishments possible, providing an extensive index of names to enhance and complete the historical record. Authoritative and unique, this book will be of interest to space scientists, science historians, and anyone interested in space history and the first U.S. space launches.

  • Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 185.
    Indian Ocean Biogeochemical Processes and Ecological Variability provides a synthesis of current knowledge on Indian Ocean biogeochemistry and ecology and an introduction to new concepts and topical paradigm challenges. It also reports on the development of more extensive/frequent observational capacity being deployed in the Indian Ocean. This represents the first collection of syntheses that emphasize a basin-wide perspective, and the contributing authors include some of the most esteemed oceanographers and Indian Ocean experts in the world. The volume is derived from invited plenary talks that were presented at the initial Sustained Indian Ocean Biogeochemistry and Ecosystem Research (SIBER) workshop held at the National Institute of Oceanography (NIO) in Goa, India, in October 2006. The volume discusses The overlying physical processes set by monsoonal forcing and how these control biological production and variability Nutrient cycling and limitation Pelagic carbon cycling and air-sea exchange Benthic biogeochemistry and ecology The impact of climate and human activities on biogeochemistry and ecosystems. The readership for this book will consist of academic and governmental researchers interested in exploring how oceanographic, atmospheric, and hydrological processes combine to establish the environmental setting that supports and drives the pelagic system and which are especially relevant to understanding the complex biogeochemical and ecological interactions in the Indian Ocean.

  • Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 178.
    Hydrothermal systems at oceanic spreading centers reflect the complex interactions among transport, cooling and crystallization of magma, fluid circulation in the crust, tectonic processes, water-rock interaction, and the utilization of hydrothermal fluids as a metabolic energy source by microbial and macro-biological ecosystems. The development of mathematical and numerical models that address these complex linkages is a fundamental part the RIDGE 2000 program that attempts to quantify and model the transfer of heat and chemicals from "mantle to microbes" at oceanic ridges. This volume presents the first "state of the art" picture of model development in this context. The most outstanding feature of this volume is its emphasis on mathematical and numerical modeling of a broad array of hydrothermal processes associated with oceanic spreading centers. By examining the state of model development in one volume, both cross-fertilization of ideas and integration across the disparate disciplines that study seafloor hydrothermal systems is facilitated. Students and scientists with an interest in oceanic spreading centers in general and more specifically in ridge hydrothermal processes will find this volume to be an up-to-date and indispensable resource.

  • Published by the American Geophysical Union as part of the Special Publications Series. Whether you are a science undergraduate or graduate student, post-doc or senior scientist, you need practical career development advice. Put Your Science to Work: The Take-Charge Career Guide for Scientists can help you explore all your options and develop dynamite strategies for landing the job of your dreams. Completely revised and updated from the best-selling To Boldly Go: A Practical Career Guide for Scientists, this second edition offers expert help from networking to negotiating a job offer. This is the book you need to start moving your career in the right direction.

empty